
BIRZEIT UNIVERSITY
FACULTY OF INFORMATION TECHNOLOGY

Convergence of Conformational Sampling For BPTI
in a 30ns Molecular Dynamics Simulation

by

Waseem Ahmad Mohmmad AL-Hausani

A Thesis Submitted

in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENTIFIC COMPUTING

Approved, Thesis

Committee:

Dr. Wa’el Karain

Dr. Mazen Hamad

Dr. Wasfi AL-Kafri

Birzeit, Palestine

November, 2007

ABSTRACT

Studying protein intramolecular motion gives an important knowledge

about its function. In this work, the convergence of the conformational

sampling space was performed on a 30ns long molecular dynamics simula-

tion of Bovine Pancreatic Trypsin Inhibitor (BPTI). The overlap between

the principle component vectors for different time windows of the simula-

tion time were calculated using two methods. The first method measures

the total overlap between covariance matrices of different time segments. It

shows a lack of convergence with steady values throughout the simulation.

The second method examines the subspace overlap between eigenvectors of

different time windows of simulation. This method shows high convergence

between 4ns long time fragments. The most of atomic fluctuations of BPTI

Cα atoms can be seen in 4ns time intervals. The B-factor and RMSD were

calculated in water to check the validity of the simulation results. They

give good agreement with the experiment.

Acknowledgments

First of all, I would like to express my gratitude to my supervisor

Dr.Wa’el Karain for all his support, guidance, constructive criticism and

ideas as well as encouragement to achieve the success of this work. He was

always very approachable.

I am grateful to Dr. Wasfi Alkfri and Dr. Mazen Hamad for their

guidance, support and help in writing my thesis.

I would also like to thank Dr.Hassan Shebli, and all physics department

members at Birzeit University for their guidance, help, and support.

I also owe my gratitude to my parents for their encouragement and

support, and to my brothers for their love, engorgement and inspiration.

Contents

Abstract ii

Acknowledgments iii

List of Figures viii

List of Tables x

1 Introduction 1

2 Theoretical Background and Used Techniques 4

2.1 Studying Proteins motion 4

2.2 Aims of Computer Simulations 6

2.3 Theoretical Techniques used in Studying Protein Dynamics 7

2.4 Molecular Dynamics and Classical Laws of Motion 9

2.5 Stochastic Dynamics . 13

2.6 Numerical Solution of the Molecular Dynamics Equations of

Motion . 14

2.6.1 Original Verlet Algorithm 15

2.6.2 The Verlet Leapfrog Algorithm 16

2.6.3 The Verlet Velocity Algorithm 17

2.6.4 The Beeman’s Algorithm 17

v

2.7 Statistical Mechanics . 18

2.8 Molecular Modeling . 21

2.8.1 Molecular Mechanics 21

2.8.2 Empirical Potential energy functions 22

2.9 Analysis Techniques . 27

2.9.1 Root Mean Square Deviation 27

2.9.2 Essential Dynamics 28

2.9.3 Principal Component Analysis Technique 29

2.9.4 The Essential Dynamics Method for Protein Dynam-

ics Analysis . 34

3 Computing Tools and Methodology 40

3.1 Molecular Dynamics Tools Used 40

3.1.1 NAMD Molecular Dynamics Software 40

3.1.2 Visual Molecular Dynamics (VMD) Software 41

3.1.3 Catdcd Tool . 42

3.1.4 FlipDCD Tool . 42

3.1.5 MATLAB: High-Performance Computation Software 43

3.2 Molecular Dynamics Simulation 44

3.2.1 Preparation of the BPTI Molecule 45

3.2.2 Solvation and Neutralization of BPTI in Water . . . 48

vi

3.2.3 Minimization Phase 50

3.2.4 Heating Phase . 50

3.2.5 Equilibration Phase 52

3.2.6 Production Phase . 52

3.2.7 Analysis of MD Simulation Trajectories 53

4 Results and Analysis 59

4.1 B-Factor . 59

4.2 Root Mean Square Deviation (RMSD) 61

4.3 Convergence of Conformational Sampling 63

5 Discussion of Results and Conclusion 72

A Files Formats 76

A.1 The PDB file format . 76

A.2 The PSF file format . 77

A.3 The DCD file format . 78

B Configuration File 82

C M-Files Used to Analysis Data trajectory 87

C.1 Calculation of the Covariance Matrix 87

C.2 The First Method to Calculate the Overlap 88

vii

C.3 The Second Method to Calculate the Overlap 89

C.4 M-file Used to Calculate the B-factor 90

References 91

List of Figures

2.1 An amino acid structure. 4

2.2 Simulations as a bridge between theory and experiment. . . 7

2.3 A protein molecule. Dark dots represent backbone atoms.

Springs represent the bonds between the atoms. 22

2.4 The backbone dihedral angles Φ, Ψ and ω[16]. 25

3.1 BPTI Molecule after ionization in a water box (solution). . . 51

4.1 Simulated B-factor for the Cα atoms of BPTI compared with

the B-factor obtained from crystallographic structure refine-

ment based on X-ray data. 60

4.2 Root mean square deviation (RMSD) of the BPTI configura-

tions with respect to the initial configuration, as a function

of simulation time. 62

4.3 Calculated covariance overlap using equation2.64. (a) The

overlap between different simulation fragments with 100ps

length for each time fragment along the 30ns simulation. (b)

Covariance overlap between 500ps time fragments. 66

ix

4.4 Calculated covariance overlap using equation2.64. (a) The

overlap between different simulation fragments with 1ns length

for each time fragment along the 30ns simulation. (b) Co-

variance overlap between 4ns time fragments. 67

4.5 Calculated covariance overlap using equation2.64 between

10ns time windows along the 30ns simulation. 68

4.6 Calculated subspace overlap using equation2.59. (a) The

overlap between 30 eigenvectors 100ps long fragments along

the 30ns simulation. (b)Overlap between 30 eigenvectors

from 500ps long fragments along the simulation time. . . . 69

4.7 Calculated overlap using equation2.59. (a) The overlap be-

tween 30 eigenvectors from 1ns long fragments. (b) Overlap

between 30 eigenvectors of 4ns long fragments. 70

4.8 Calculated overlap using equation2.59. (a) The overlap be-

tween 30 eigenvectors of 7ns long fragments. (b) Overlap

between 30 eigenvectors of each 10ns time fragments along

the simulation. 71

A.1 The PDB file format example 77

A.2 The PSF file format example for BPTI 80

A.3 The DCD file format example 81

List of Tables

1.1 The characteristic times for common molecular events. . . . 2

A.1 The PDB format for coordinate records 79

Chapter 1

Introduction

The aim of this work is to investigate how long a simulation should be

to obtain good insight about protein (BPTI) global motions. To do so the

simulation running for a 30ns was performed. The Essential Dynamics or

PCA method was used to analysis the trajectory resulted from the simula-

tion to find the overlap between eigenvectors of protein subsets along the

motion as an indicator of the convergence of protein sampling along the

simulation.

The aim of calculating the overlap between protein subspaces is to find

the time necessary to perform the dynamics of BPTI. This time can range

from picoseconds scale to nanoseconds time scale. The table 1.1[1] lists the

characteristic times for common molecular events.

B. Hess[2] used the PCA method for studying the convergence of sam-

pling in protein (Iysozyme and HPr) simulations. He found that 14ns is

not enough time to obtain the convergence of sampling, and show that the

PCA and covariance calculations is a good indicator for bad sampling[2].

Faraldo-Gómez et. al.[3] also used the same method for studying the con-

vergence of the sampling of conformational space accomplished in molecular

2

Event Time

Bond stretch 1 to 20 fs

Elastic domain modes 100 fs to several ps

Water reorientation 4ps

Inter-domain bending 10ps to 100ns

Globular protein tumbling 1ns to 10ns

Aromatic ring flipping 100µs to several seconds

Allosteric shifts 2µs to several seconds

Local denaturation 1ms to several seconds

Table 1.1 The characteristic times for common molecular events.

dynamics simulations of membrane proteins along 10ns.

This work follow the same method (PCA) in analysis the trajectory pro-

duced by simulation of BPTI along 30ns time scale. The overlap between

eigenvectors for different size time-windows along the simulation time show

high convergence at 4ns time-windows size. This consider as a new insight

about the BPTI motion convergence time by molecular dynamics simula-

tion.

Outline of this thesis

The second chapter of this thesis is concerned with the theoretical back-

ground about Molecular Dynamics technique which used in the simulation.

3

Also it contains a brief introduction about Essential Dynamics or Principle

Component Analysis technique and overlap method.

The third chapter describe the used tools in running the simulation and

analysis the results like NAMD software, VMD package, and MATLAB.

The procedure used in running the simulation and in data analysis are

included in the late sections of this chapter.

Chapter four is the main chapter of this thesis because it is contains all

the results obtained by the simulation and its analysis.

Finally, chapter five presents the discussion of results and the conclusion

of my work and the future work which should do to continue the work in

protein (BPTI) dynamics.

Chapter 2

Theoretical Background and Used

Techniques

2.1 Studying Proteins motion

Proteins are complex macromolecules made up of amino acids (Fig.2.1),

consisting of thousands of atoms[4]. All amino acids have a central atom

(carbon atom) which is called Cα. Twenty different side-chains can be

attached to the Cα atom giving twenty types of amino acids[5]. Proteins

are essential parts of all living organisms because all processes within living

cells depend on protein activity, e.g., transport, storage, signaling, and

defence.[6, 5].

Figure 2.1 An amino acid structure.

5

Understanding protein biological functions requires studying its atomic

motions. Scientific evidence suggests that biological processes, such as en-

zyme and virus activity, depends on atomic correlated motions[6, 7]. These

motions range from tenths of Angstroms on the femtosecond time scale to

several seconds[2].

Bovine pancreatic trypsin inhibitor (BPTI) is widely used in study-

ing intramolecular motions of protein atoms. It is one of the smallest

and simplest proteins and contains 57 amino acid residues[8]. It is also,

one of the most extensively studied proteins and has been investigated

structurally using x-ray crystallography and Nuclear Magnetic Resonance

(NMR) spectroscopy[9].

Both experimental techniques (X-ray crystallography, Nuclear Magnetic

Resonance (NMR) and Neutron scattering) and theoretical techniques (e.g.

Monte Carlo (MC) and Molecular Dynamics (MD)) are used to study struc-

ture , dynamics and thermodynamics of biological molecules (e.g. protein)

and their complexes[10]. Theoretical techniques provides a complete knowl-

edge about conformational changes of proteins at the nanosecond time scale.

This is very useful considering that currently no experimental techniques

allows the study of protein dynamics at the nanosecond time scale[6].

Current processing speeds of computers provide a realistic option to

6

study protein molecules to obtain dynamics information in the picosecond

to nanosecond time scale.

2.2 Aims of Computer Simulations

Simulations play an important role in studying natural phenomena es-

pecially in a conceptually difficult field such as physics. As to the role of

molecular dynamics, it can bring to life the entire invisible universe of the

atom[11].

Computer simulations aim to understand structure and macroscopic

properties of molecules and the microscopic interactions between atoms in

molecules[12]. Molecular dynamics is one of the most powerful computer

techniques that offer new information of dynamical properties of molecules

where conventional experiments cannot find these properties of molecules

and atoms. Computer simulations act as a bridge between theory and ex-

periment (Fig.2.2). They may be used to test a theory or to test the model

by comparing simulation results with experimental results. Moreover, com-

puter simulations can be used to carry out studies on intramolecular actions

that are impossible to study experimentally[12].

7

Figure 2.2 Simulations as a bridge between theory and experiment.

2.3 Theoretical Techniques used in Studying Protein
Dynamics

Theoretical methods are used for generating and evaluating represen-

tative molecular conformations for peptides and small proteins, based on

molecular mechanics energy functions[13]. Monte Carlo (MC), Molecular

Dynamics (MD) and Lengeven Dynamics (LD) are considered as a distinct

methods seeking for minimum energy conformer to generate a conforma-

8

tional states[13].

MC Method is a stochastic technique based on the use of random num-

bers and probability statistics, used in many fields of science (biochemistry,

nuclear physics, biophysics,...etc) for studying complex and large systems

with hundreds or thousands of atoms (e.g. proteins), which can be sampled

in a number of random configurations that describe the whole system [14].

This means that MC for proteins simulation samples conformation space

without a realistic dynamics trajectory (time-independent quantities)[15].

MD is a computational Method for simulating the motion of a system of

many particles[16].MD simulation is a realistic method describe the collec-

tive motion of the molecule in terms of Newton’s equations(Hamiltonian,

Lagrangian, or direct expression) of motion[13],it is also allow to simulate

the behavior of a molecular system under different conditions of tempera-

ture, pressure, and other parameters[17].

LD is a stochastic method used explicitly for the solvent model by re-

placing Newton’s equations with the Lengeven equation to approximate the

effects of neglected degrees of freedom for the solvent[13, 15].

Today, MD is a popular technique used widely to study dynamics of sol-

vated proteins, protein-DNA complexes, lipid systems and folding of small

proteins[10].

9

2.4 Molecular Dynamics and Classical Laws of Mo-
tion

Molecular Dynamics simulations are the main theoretical techniques

used to study protein dynamics. Increased computer power and improving

algorithms have extended accessible system sizes and time scales. simula-

tions of large systems like protein surrounded by 3000 water molecules are

possible[4, 18]. The computer power has increased by 105 since the first

molecular simulation of a protein.

In a MD simulation, classical mechanics is used to determine the inter-

action forces between atoms of the molecule. These forces of interactions

are calculated by Newton’s second law which state that the time rate of

change of the velocity (acceleration) is directly proportional to the force

and inversely proportional to the mass of the particle[19].

Fi = miai (2.1)

where Fi is the force exerted on particle (atom) i, mi is the mass of particle i

and ai is the acceleration of particle i. Atomic positions along the simulation

time xi are calculated from equation(2.2):

ai =
d2xi

dt2
(2.2)

The force can also be expressed as the gradient of the potential energy,

10

Fi = −∇iV (2.3)

by combining the two equations (2.2) and (2.3) we get:

−∂V

∂xi

= miai = mi
∂2xi

∂t2
(2.4)

where V is the potential energy of the system. Newtons equation of motion

now relate the derivative of the potential energy to the changes in position

xi as a function of time.

Determining the force acting on each atom of the molecule makes finding

the velocity, acceleration and position (micro states) of this atom easy

along the simulation time. This means that the state of the system or the

macroscopic properties of the molecule can be calculated at any time by

statistical ensemble averages as explained in section (2.7) . An example of

one-dimensional motion can be shown as the following:

F = m · dv

dt
= m · d2x

dt2
(2.5)

takeing a special case where the acceleration is constant

a =
dv

dt
(2.6)

the velocity can be found by solving the simple differential equation(2.6)

11

and the result gives

v = at + v0 (2.7)

also since

v =
dx

dt
(2.8)

the position x can found by solving the differential equation (2.8) to get

x =
∫

vdt (2.9)

By subsituting the velovity from equation (2.7) in equation (2.9), we can

get a new equation which gives the position x as a function of acceleration

a, initial position x0, and initial velocity v0 as shown by equation (2.10):

x =
1

2
at2 + v0t + x0 (2.10)

This equation (2.10) can calculate the trajectory if the initial values of

positions and velocities of the protein molecule atoms and acceleration are

known.

The experimental techniques which deal with studying protein structure

such as x-ray diffraction and NMR spectroscopy, offer the needed starting

positions of the protein molecule atoms. An initial distribution of veloci-

ties of atoms is obtained by guessing random velocities from a Maxwellian

distribution at a given temperature.

12

The total energy of the molecule is a function of the atomic positions

along the trajectory:

E = K + U =
1

2

N∑

i=1

mi ‖ ri ‖2 +U(r1, r2, ...rn) (2.11)

where U is the potential energy function, K is the kinetic energy, and r the

position coordinates (x,y,z) of the atom i.

Another way to determine the interaction forces between the atoms in

the molecule is the Hamiltonian formulation. The Hamiltonian equation is

defined in terms of particle positions ri and momenta pi[20].

H =
3N∑

i=1

p2
i

2mi

+ U(q1, q2, ...q3N) (2.12)

where q is the positions of the N particles. Hamiltonian equations of motion

are:

q̇i =
∂H

∂pi

(2.13)

ṗi = −∂H

∂qi

(2.14)

Hamiltonian formulation is more convenient than Newton’s equation

because it is straightforward to prove energy conservation, but we use New-

13

ton’s equation of motion in protein motion problem because it is direct in

calculating the the trajectory of motion.

2.5 Stochastic Dynamics

Stochastic dynamics on the protein simulation produced by a collision of

the protein molecule atoms with the solvent molecule atoms. This dynamics

represented by Langevin equation(2.15) in which two force terms are added

to Newton’s second law to approximate the effects of neglected degrees of

freedom[13, 15]. Langevin dynamics can search conformations better than

Newtonian molecular dynamics[15].

mir̈i(t) = Fi(t)− βivi(t) + fi(t) (2.15)

where m is the mass of the particle (atom), Fi is the systematic force exerted

exerted on on atom i by other atoms, β is the friction constant, and fi is

the random force which measure the collisional effect of the solvent on the

solute.

The random force fi(t) in protein simulations is completely uncorrelated

at different times:

〈fi(t) · fi(t́)〉 = 6kBTβiδ(t− t́) (2.16)

14

where kB is the Boltzmann’s constant, T is the temperature, and δ(t − t́)

is the Dirac delta function.

2.6 Numerical Solution of the Molecular Dynamics
Equations of Motion

For N atoms of a protein molecule, Newton’s second law (equation 2.4)

represents 3N second-order, ordinary differential equations of motion where

the potential energy is the function of atomic positions of atoms in the

molecule. These equations of motion have no analytical solutions, and so

numerical methods are needed to solve them[21].

Finite-difference methods replace differential (such as dx and dt) with

finite differences (∆x and ∆t), which means to replace differential equa-

tions with finite-difference equations over a small finite time ∆t. Several

finite-difference methods originate from the truncated Taylor expansion[21].

r(t + ∆t) = r(t) + ṙ(t) +
1

2
r̈∆t2 + ... (2.17)

v(t + ∆t) = v(t) + v̇(t) +
1

2
v̈∆t2 + ... (2.18)

a(t + ∆t) = a(t) + ȧ(t) +
1

2
ä∆t2 + ... (2.19)

15

where r is the position of atoms (x,y,z components), ṙ is the velocity v,

and r̈ is the acceleration a. The most famous finite-difference methods or

algorithms used are:

• Euler’s Method.

• Runge-Kutta Method.

• Predictor-Corrector Method.

• Verlet Method.

Verlet Method is the chosen numerical method to used in Molecular

Dynamics for the numerical solution of the Newton’s equations of motion,

because it is reflect the symmetry of Newton’s equations. Verlet method

has many algorithms developed to solve ordinary differential equations, the

following sections explain these algorithms.

2.6.1 Original Verlet Algorithm

It is one of the most popular algorithms because of its simplicity. To

obtain the main equations of verlet algorithms let us expand the coordinates

at times t + ∆t and at t−∆t by Taylor expansion[22]:

r(t + ∆t) = r(t) + v(t) +
1

2
a∆t2 + ... (2.20)

16

r(t−∆t) = r(t)− v(t) +
1

2
a∆t2 + ... (2.21)

by adding the two equations (2.20) and (2.21), the main equations of the

Verlet algorithm are:

r(t + ∆t) = 2r(t)− r(t−∆t) + a(t)∆t2 (2.22)

The verlet main algorithm stores coordinates and accelerations per time

step. Velocities are not present explicitly in this algorithm[22].

2.6.2 The Verlet Leapfrog Algorithm

The Verlet leapfrog algorithm is an economical version of the basic Verlet

algorithm. The main equations defining this algorithm are[23]:

r(t + ∆t) = r(t) + v(t− 1

2
∆t)∆t (2.23)

v(t +
1

2
∆t) = v(t− 1

2
∆t) + a(t)∆t (2.24)

v(t) =
1

2
[v(t− 1

2
∆t) + v(t +

1

2
∆t)] (2.25)

This algorithm needs only to store one set of positions and velocities of

the atoms which means it is simpler to program than the basic version of

17

the verlet algorithm. The velocities given by equation (2.24) are half-step

velocities calculated at time t + 1
2
∆t, while the positions are calculated at

time t + ∆t. This means that the velocities and positions leap over each

other[23].The full-step velocities could be obtained by the equation (2.25).

2.6.3 The Verlet Velocity Algorithm

Verlet velocity is a modification of the basic verlet algorithm. It cal-

culates the atomic positions and velocities at the same time t. The basic

equations of this algorithm are:

r(t + ∆t) = r(t) + v(t)∆t +
1

2
a(t)∆t2 (2.26)

v(t + ∆t) = v(t) +
1

2
[a(t) + a(t + ∆t)]∆t (2.27)

The advantage of this algorithm is that it requires less memory than the

other versions of verlet algorithm because one set of positions and velocities

need to be carried at any one time t.

2.6.4 The Beeman’s Algorithm

Beeman’s algorithm is a numerical integration method closely related

to verlet integrations. It is more accurate in calculating positions and ve-

locities of atoms in molecular dynamics simulations than the other verlet

18

integrations. According to Beeman’s algorithm the translational positions

and velocities of atoms are given by equations[24]

r(t + ∆t) = r(t) + v(t)∆t +
2

3
a(t)∆t2 − 1

6
a(t−∆t)∆t2 (2.28)

v(t + ∆t) = v(t) +
1

3
a(t + ∆t)∆t +

5

6
a(t)∆t− 1

6
a(t−∆t)∆t (2.29)

This algorithm provides a greater precision and energy conservation.

However, it is computationally more expensive[25].

2.7 Statistical Mechanics

Statistical mechanics (also called statistical thermodynamics) is the link

between the properties of molecules (microscopic behavior) and the behav-

ior of macroscopic matter. So, if the distribution of the particles of the

system among its energy states is known, the macroscopic properties of the

system can be predicted[26, 27].

A molecular dynamics simulation yields a trajectory that contains the

positions of each atom along the simulation time. These are used to cal-

culate the velocities of the atoms making up the molecule as a function of

time. Statistical mechanics is then used to convert this microscopic infor-

19

mation (position and velocity) to macroscopic properties such as pressure,

energy and heat capacity.

To calculate macroscopic states from microscopic states the time in-

dependent statistical averages are calculated. These averages are defined

in terms of ensemble averages. An ensemble average is defined as an

average taken over a large number of replicas of the system considered

simultaneously[10]. An ensemble average is given by the equation (2.30):

〈A〉ensemble =
∫ ∫

dpNdrNA(pN , rN)ρ(pN , rN) (2.30)

where p is the momenta and r the positions of the system. The integration

is over all possible variables of r and p. The probability density of the

ensemble is given by equation (2.31):

ρ(pN , rN) =
1

Q
exp[−H(pN , rN)/KBT)] (2.31)

where H is the Hamiltonian, T is the temperature, KB is Boltzmanns con-

stant and Q is the partition function.

Q =
∫ ∫

dpNdrN exp[−H(pN , rN)/KBT)] (2.32)

Calculating the double integral in equation(2.32) is very difficult over all

possible states of the system, but in a MD simulation the positions of atoms

20

are calculated as a function of time along the simulation, so it is easy to

calculate a time average of A as shown by equation (2.33):

〈A〉time = lim
t→∞

1

τ

∫ t

t=0
A(pN(t), rN(t))dt ≈ 1

M

M∑

t=1

A(pN , rN) (2.33)

where τ is the simulation time, M is the number of time steps along the

simulation and A(pN , rN) is the instantaneous value of A. The problem

now is how one could calculate the ensemble averages from time averages

by a MD simulation. The ergodic hypothesis solved this problem because it

states that the time average equals the ensemble average (equation (2.34)):

〈A〉ensemble = 〈A〉time (2.34)

According to the ergodic hypothesis any physical quantity can be calcu-

lated from the MD trajectory as an average of this quantity values along the

simulation time. For example the average potential energy along trajectory

time is calculated as shown by equation(2.35):

V = 〈V 〉 =
1

M

M∑

i=1

Vi (2.35)

where M is the number of configurations in the molecular dynamics trajec-

tory and Vi is the potential energy of each configuration.

21

Also the kinetic energy of the system is calculated as shown in equation

(2.36):

K = 〈K〉 =
1

M

M∑

j=1

{
N∑

i=1

mi

2
vi · vi} (2.36)

where M is the number of configurations in the simulation, N is the number

of atoms in the system, mi is the mass of the particle i and vi is the velocity

of particle i.

2.8 Molecular Modeling

Protein conformational energy can be calculated using the approxima-

tions of potential energy functions[16]. Many potential energy functions

are developed which is mathematical functions of the atomic coordinates,

in this section the basic techniques used to predicting protein structure

based on the minimum energy assumptions will introduce.

2.8.1 Molecular Mechanics

Molecular mechanics (MM) is a series of mathematical and classical

physics assumptions used to model the structure of large and complex

molecules in a practical manner [28]. Molecular mechanics studies molecules

containing thousands of atoms such as organics,oligonucleotides, peptides,

and saccharides (metallo-organics and inorganics in some cases)[29]. To cal-

22

culate the forces acting on these atoms the molecules are treated as a col-

lection of particles held together by simple harmonic forces. Atoms are con-

sidered as spheres, and bonds between atoms as springs (Fig.2.3)[4, 30, 29].

Figure 2.3 A protein molecule. Dark dots represent backbone atoms. Springs
represent the bonds between the atoms.

2.8.2 Empirical Potential energy functions

In molecular mechanics, energy consists of bonded (stretching, bending

and torsion) and non-bonded (van der Waals and electrostatic) terms[4, 7,

12, 30, 29, 31, 32]:

E = E(Bonded) + E(Non−Bonded) (2.37)

E = Estretching + Ebending + Etorsion + Evanderwaals + Eelectrostatic (2.38)

23

Molecular mechanics calculates the energy of a molecule and then adjusts

the energy through changes in bond lengths and angles to obtain the mini-

mum energy structure[32].

A force field is a set of functions used to calculate the potential energy

of the molecule. Most force fields are composed of empirically determined

interaction terms. A number of these force fields have been developed for

biomolecules, specifically for proteins and DNA/RNA. The most common

are CHARMM, GROMOS96, AMBER, and OPLS[4, 7]. AMBER force field

is commonly used to study protein dynamics[31]. This force field describes

interactions between the molecule atoms from covalent chemical bonds and

non-bonds (non-covalent) interactions. Details of each bond function are

explained as follows:

Bonded Interactions

For protein molecules the intramolecular bonding interactions include

terms of the following types:

1. Stretching Energy: is a harmonic potential representing the inter-

action between any two atoms in the protein molecule separated by

one covalent bond[29, 31]. This energy is based on the Hooke poten-

tial.

24

Estretch =
∑

pairs

ks(r − r0)
2 (2.39)

where r0 is an initial bond length (equilibrium distance), ks is the

force constant for the bond , and r is the new distance between two

atoms. Both r0 and ks are unique for each bond and depend on the

atom types[32].

2. Bending Energy: is the energy required to bend a bond from its

equilibrium angle θ0. This energy is based on Hook’s law in which the

bending bond is modeled by a spring [32].

Ebend =
∑

angles

kθ(θ − θ0)
2 (2.40)

Both θ0 and kθ are constant values that depend on the type of atoms

constituting the angle (e.g. C-C-C, C-O-C, C-C-H, etc.)[29]

3. Torsion Angle Energy: is the energy of torsion required to rotate

about single bonds only because double and triple bonds are too rigid

to rotate[32]. So it models the presence of steric barriers between

atoms separated by 3 covalent bonds (1,4 pairs)[10]. The dihedral

angle rotation is shown in fig.2.4.

25

Edihedral =
∑

torsions

kφ(1 + cos(nφ− δ)) (2.41)

Figure 2.4 The backbone dihedral angles Φ, Ψ and ω[16].

The constant kφ is the rotation force constant, n is the coefficient

of symmetry (n=1,2,3), and φ is the dihedral angle about the bond.

Both kφ and n depend on the type of bonds between atoms (e.g.

C-C-C-C, C-O-C-N, H-C-C-H, etc). The constant kφ controls the

amplitude of the potential curve, while the n parameter controls its

periodicity[10, 29, 32, 33]

Non-Bonded Interactions

The most important non-bonded energy terms in protein MD are the

Van der Waals and the electrostatic interactions of atom pairs.

1. Van der Waals Energy: is the interaction energy of the atomic pair

26

(i and j) is treated with Lennard-Jones potential function as shown

in equation(2.42)[33]. This interaction between two atoms arises from

a balance between repulsive and attractive forces[29].

EV dW,ij =
∑

Non−bondedpairs

(−Aij

r6
ij

+
Bij

r12
ij

) (2.42)

where A and B are constants that depend on the type of atoms in-

volved in the non-bonded interactions (e.g. C:C, O:C, O:H, etc.), rij

is the distance (in Angstroms) between the two nuclei, and the −Aij

r6
ij

part is the attractive part and the +Bij

r12
ij

part is the repulsive part of

the interaction. When the atomic pair distance is very small, the two

atoms are very close together, and the function is highly repulsive.

But when the two atoms are far apart, the interaction is attractive

between them. The interatomic attraction decreases as the separation

distance approaches infinity[33].

2. Electrostatic Energy: the electrostatic interaction energy of the

atomic pair (i and j) is represented by the coulomb potential function

(equation 2.43)when the signs of the partial charge are[33].

Eelectrostatic,ij =
∑

Non−bonded(pairs)

kQiQj

4Πεrij

(2.43)

27

where Qi and Qj are the partial atomic charges for atoms i and j

separated by a distance rij, ε is the relative dielectric constant and K

is a units conversion constant in Kcal/mol.

2.9 Analysis Techniques

The MD simulation trajectories are huge sets of data. Efficient compu-

tational methods and statistics are needed to analyze and compress these

huge data. This is done by reducing the number of dimensions without

much loss of information, and by highlighting similarities and differences

of data during simulation time[34]. The Essential Dynamics (ED) method

(see section 2.9.2) and other statistical calculations like, Root Mean Square

Deviation (RMSD) (see section 2.9.1), and variance and covariance calcula-

tions, form an efficient computational method used to analyze and compress

the large data produced by MD simulations. This method is a standard tool

used to investigate the important biomolecular motions[35].

This section contains the most common computational techniques used

to analyze protein motion trajectories produced by MD simulations.

2.9.1 Root Mean Square Deviation

The Root Mean Square Deviation (RMSD) is a numerical statistic mea-

sure of the difference of two structures[36]. For protein dynamics, RMSD

28

is used to calculate the distance between two aligned conformations of Cα

atoms (carbon backbone atoms)[7].

RMSD =

√∑N
i=1(ri(t1)− ri(t2))2

N
(2.44)

where N represents the number of atoms, ri is the position of atom i (x,y,z

coordinates) at time t.

RMSD =

√∑N
i=1((∆xi)2 + (∆yi)2 + (∆zi)2)

N
(2.45)

2.9.2 Essential Dynamics

The Essential Dynamics technique (ED) is equivalent to the Principal

Components Analysis (PCA) of atomic displacements in an ensemble of

structures. It has been used to divide the conformational space of motion

into two major subspaces: the essential subspace explaining the atomic

fluctuations, and the subspace in which the fluctuations have random char-

acteristics (local fluctuations)[6, 35].

Essential dynamics analysis is used to distinguish large concentrated in-

ternal motions from small, random, and local internal motions[37]. Also

ED analysis is used to remove all of non-internal motions like rotation and

translation of protein molecule by fitting its atoms to a reference structure.

29

The ED or principal component analysis is based on construction and di-

agonalization (find eigenvectors and eigenvalues) of the covariance matrix

of positional fluctuations[6, 7].

In short, the ED method can be summarized by two major steps[7, 37,

34, 38, 39]:

1. Eliminating the overall rotational and translational motions from the

simulation data, because only internal motion of protein atoms are of

interest. This is done by fitting and aligning atom trajectories of the

protein to a reference frame.

2. Building a covariance matrix and computing its eigenvectors and

eigenvalues. This allows for a description of internal (essential) mo-

tions of protein atoms by using PCA method.

2.9.3 Principal Component Analysis Technique

Principal component analysis (PCA) is a valuable applied linear algebra

technique. PCA has been used in many diverse fields ranging from neuro-

science to computer graphics. It can identify the dominant variables and

mechanisms that describe and control the structure and processes underly-

ing specific data sets[38, 39].

In PCA the values of data (observations) are placed in a 2-dimensional

30

matrix of size (n × p) where the rows represent one index and columns

represent the other. PCA was initially developed to explain the variance-

covariance structure of a set of variables by linearly combining the original

variables[40].

X = [x1, x2, . . . , xp] (2.46)

X is the trajectory variables (data set). Through PCA, a set of uncorrelated

linear combinations can obtained in the following matrix[40]:

Y = AT X (2.47)

where Y = (y1, y2, . . . , yp)
T , y1 is the first principal component (PC), y2 is

the second PC and so on. A is an orthogonal matrix with size p × p and

AT A = I. The eigenvectors and eigenvalues can be computed from the

data matrix in which fewer eigenvectors than the number of original data

vectors are required to sufficiently represent the data, which allows for data

compression. [39].

Variance and Covariance

Variance is a measure of the spread of data in a data set. It is simply

the standard deviation (SD) of data.

31

SD =

√∑N
i=1(Xi −X)2

N − 1
(2.48)

var =

∑N
i=1(Xi −X)2

N − 1
(2.49)

Xi represents the data set variables (x1, x2, . . . , xN), X is the mean of data,

and N is the number of data variables. It is obvious from the equation (2.49)

that variance is the standard deviation squared. The variance formula could

also be written as:

var(X) =

∑N
i=1(Xi −X)(Xi −X)

N − 1
(2.50)

The variance operates on one-dimensional data sets only. However,

many data sets are multi-dimensional. A useful measure for multi-dimensional

data sets is covariance, which is used to find out how much the dimensions

of a data set vary from the mean with respect to each other[34].

cov(X,Y) =

∑N
i=1(Xi −X)(Yi − Y)

N − 1
(2.51)

The covariance (Eq.2.51) is used for two dimensional data sets. If a data

set is three-dimensional data (x, y, z), the covariance would be calculated

between every two dimensions in the set, like covariance between x and y,

32

y and z, and so on. The covariance between x and x, y and y or z and z

gives the variance of x, y and z respectively[34].

The covariance measures the degree of the correlation between two vari-

ables (two dimensions data set). The covariance value is an indicator of

how the two variables relate to each other [34, 38]:

1. If the covariance value is positive cov(X) > 0, that means the two

variables increase together.

2. If the covariance value is negative cov(X) < 0, that means that one

variable increases while the other decreases.

3. If the covariance value is zero cov(X) = 0, that means the two vari-

ables are independent of each other (uncorrelated).

The Covariance Matrix

For an n-dimensional data set, the number of different covariance values

that can be calculated are n!
(n−2)!×2

(n: number of variables in data set).

The covariance matrix is a square matrix in which each entry in it is the co-

variance between two separate dimensions[34]. To calculate the covariance

for an n-dimensional data set, all data measurements are ordered in m× n

matrix X, with each row of the matrix containing the number of dimensions

33

or variables, and each column containing the set of measurements for one

variable.

X =




x11 x1n

x21 x2n

...
...

xm1 xmn




(2.52)

The covariance matrix entries are calculated as follows:

cij =
1

n− 1

n∑

k=1

(xik − xi)(xjk − xj), i, j = 1, ..., m (2.53)

The cij value is the ijth element of the covariance matrix Cn×n, where the

produced covariance matrix is a square n × n matrix (n is the number of

variables in data set or its the number of columns in data matrix). The

properties of this covariance matrix can be summarized as follows[38]:

1. C is a square symmetric matrix.

2. The diagonal entries of C are the variance of each variable in the data

set with itself.

3. The non-diagonal entries of C are the covariance values between dif-

ferent measurement types.

34

2.9.4 The Essential Dynamics Method for Protein Dynamics
Analysis

Essential Dynamics aims to identify a new reference frame such that only

a subset of coordinates is sufficient to describe the over-all dynamics of the

protein molecules[41]. This essential subspace, responsible for the majority

of the fluctuations, is given by ten to twenty principal components[6]. The

other remaining degrees of freedom corresponding to constrained harmonic

oscillations can be neglected.

The first step in essential dynamics analysis, when applied to protein

trajectories produced by MD simulations, is to remove all rotational and

translational motions. This is done by fitting and aligning the protein

atom coordinates along the trajectory to a reference frame. This is done

by a translation of the center of mass of every configuration (frame) to the

origin. This is followed by a least squares rotational fit of the atoms onto a

reference structure(reference frame)[6].

The second step is to calculate the covariance matrix of the protein

atoms positional fluctuations. Protein covariance matrix contains only

backbone carbon (Cα) atoms trajectories because they are more stable than

the proteins floppy side-chains and give a good indication of the proteins

spatial conformation[36]. Moreover, Proteins Cα atoms contain all the im-

35

portant information of the protein large concerted motions.

A set of eigenvectors and eigenvalues of protein motion can be obtained

by diagonalization of the covariance matrix. Each eigenvector describes a

collective mode of protein motion that is not linearly correlated with any

other in the system. The fluctuation order of this motion is given by the

corresponding eigenvalues[3]

Fitting and Aligning the Structure

The first step in an essential dynamics analysis of protein atoms trajec-

tory, is fitting the frames of the trajectory by a least squares fit method onto

a reference frame. This step removes overall translational and rotational

motion since only internal motions of the protein molecules are interesting

to analyze[42, 43].

Let xn and yn (n representing the number of atoms)be two vector sets of

atomic coordinates containing only backbone atoms (Cα) of the two protein

structures. A least squares procedure is used to fit yn to xn (reference frame)

as follows:

1. Optimal alignment based on atom positions is defined by minimizing

the ”distance” between two frames G1 and G2, which is the sum of

the squared distance between corresponding atoms[44].

36

d(G1, G2) =
n∑

i=1

(a1i − a2i)
2 (2.54)

2. In protein alignment we try to place every frame as close as possible

to the reference frame. To do so we need a rigid transformation Ri

to minimize the distance d(Ri(Gi), Gref), i = 1, ..., M (M number of

geometries or frames that to be aligned), where Gref is the reference

frame,Gi represents the frame to be aligned. Ri optimal can be com-

puted according to the Kasbah method in which all frames translate

in such a way that their barycenters bi = 1
n

∑n
j=1 aij coincide with

barycenters of the reference frame[44, 45].

3. Building a symmetric 3× 3 matrix:

Ri =
n∑

k=1

aref,k ⊗ ai,k (2.55)

4. The optimal rotation for the frame Gi can be found by finding eigen-

vectors and eigenvalues of RT
i Ri matrix.

5. Now the rotation matrix can be computed from the normalized eigen-

vectors pi and eigenvalues qi:

37

U =
3∑

i=1

qi ⊗ pi (2.56)

This method is fast for small proteins (around 600 residues), but it is

slow for large proteins. The adaptive selection algorithm used appears to

have computational complexity of order N2[46].

Diagonalization the Covariance Matrix

The covariance matrix is constructed from the Cα atomic positions along

the simulation time according to the equation (2.57):

Cij = 〈(Xi − 〈Xi〉)(Xj − 〈Xj〉)〉 (2.57)

where X are the x,y and z coordinates of atoms, 〈X〉 are the ensemble

average over time. The diagonalization of this symmetric matrix gives a

set of eigenvectors and eigenvalues in which the transformation matrix T

contains the eigenvectors (principal components of C) as columns, and the

resulting diagonal matrix A contains the corresponding eigenvalues[6, 47]:

A = T T CT (2.58)

The eigenvectors represent a direction in a high-dimensional space, de-

scribing concerted fluctuations of protein atoms (Cα)[47]. These eigenvec-

38

tors are sorted according to their eigenvalues. The eigenvectors with the

large eigenvalues approximate the sum of protein fluctuations. Those with

small eigenvalues represent the most constrained degrees of freedom[6].

The Overlap of Protein Fluctuations

Overlap of two vectors is the volume of the intersection between them.

The overlap between two subsets of a protein simulation (A and B) is a

common PCA approach used to explore the same conformational space[3].In

other words, it can be used as a measure for the convergence of the sampled

space[2]. To do so, we use the expression:

ΨA,B =
1

n

n∑

i=1

n∑

j=1

(vAi · vBj)
2 (2.59)

where Ψ is the subspace overlap, vA and vB are two subset of eigenvectors

of each ensemble (A and B), and n is the number of eigenvectors used.

The eigenvectors are chosen to represent the significant proportion of the

fluctuations in the simulation[3]. An overlap value of 0 occurs when two

eigenvector subsets are completely dissimilar, and 1 when they are identical.

The other approach for quantifying the similarity between conforma-

tional spaces obtained from two time-windows of the simulation uses all the

eigenvectors of the covariance matrix and their corresponding eigenvalues,

and is calculated as[2]:

39

s(A,B) = 1− d(A,B)√
trA + trB

(2.60)

where s is the overlap between two covariance matrices A and B, tr is

the trace of a matrix and d(A,B) is the difference between the covariance

matrices A and B defined as:

d(A,B) =
√

tr[(A1/2 −B1/2)2] (2.61)

where

A1/2 = Rdiag(λ
1/2
1 , λ

1/2
2 . . . , λ1/2

n)RT (2.62)

so

d(A,B) = [
n∑

i=1

(λAi + λBi)− 2
n∑

i=1

n∑

j=1

√
λAi + λBi(RAi ·RBj)

2]1/2 (2.63)

where R is the matrix its columns being the eigenvectors Ri, λi are the

eigenvalues and diag() is a diagonal matrix. Now the overlap s can be

defined as:

s(A,B) = [

∑n
i=1(λAi + λBi)− 2

∑n
i=1

∑n
j=1

√
λAi + λBi(RAi ·RBj)

2

∑n
i=1(λAi + λBi)

]1/2

(2.64)

The overlap s is one if two matrices A and B are identical,and is zero

when the sampled subspaces are completely orthogonal.

Chapter 3

Computing Tools and Methodology

This chapter contains a brief introduction to each tool used in running

the BPTI simulation, and in analyzing the resulting trajectory. Also it

contains an explanation of the methodology used to perform a molecular

dynamics simulation of BPTI.

3.1 Molecular Dynamics Tools Used

The computational tools used in this research are divided into two main

categories. First, the tools used in preparing and running molecular dy-

namics simulations of protein (NAMD and VMD), and the second are the

tools used in principal component analysis of the resulting protein trajec-

tory (Catdcd, Flipdcd, and MATLAB)

3.1.1 NAMD Molecular Dynamics Software

NAMD (NAnoscale Molecular Dynamics) is a parallel, object-oriented

molecular dynamics software. It was developed by the Theoretical Bio-

physics Group at Illinois Beckman Institute (University of Illinois). It is

supported by the National Institutes of Health Resource for Macromolec-

ular Modeling and Bioinformatics, and the National Science Foundation.

NAMD is designed for high-performance simulations of biological systems

41

on a number of different hardware platforms[48, 49].

NAMD is based on Charm++ parallel objects, used in other molecu-

lar dynamics simulation programs (e.g. X-PLOR, CHARMM, GROMACS,

AMBER, ...). It computes atomic trajectories by solving equations of mo-

tion numerically using empirical force fields. The main advantage of NAMD

over other MD packages, is the ability of NAMD to run efficiently on parallel

processors for simulating large molecules.

3.1.2 Visual Molecular Dynamics (VMD) Software

VMD is a molecular graphics software developed as NAMD by the The-

oretical and Computational Biophysics group at the University of Illinois

and supported by grants from the National Institutes of Health and the Na-

tional Science Foundation. VMD is used in research in different disciplines

like biology, physics, chemistry and biophysics. VMD is designed for the

visualization and analysis of biomolecular systems such as proteins[36].

VMD is available free of charge for end-users at:

http//:www.ks.uiuc.edu/reserach/vmd/. It supports Microsoft Windows

XP/NT, MAC and Unix platforms. The main feature of VMD is its ability

to animate and analyze the trajectory of MD simulation.

42

3.1.3 Catdcd Tool

A DCD file is a binary format file used by CHARMM, X-PLOR and

NAMD. It contains the coordinate trajectories produced by one of the sim-

ulation packages. The DCD format is structured as a FORTRAN UN-

FORMATTED data type[48]. The output file is always binary because it

requires much less space than text file, and reading it is much faster than

reading text format.

Catdcd tool is used just like the Unix ”cat” command to concatenate

DCD files into a single DCD file. It is also used to specify which atoms

should be written into the output DCD file[50]. In this work Catdcd was

used to separate Cα (protein backbone atoms) coordinate trajectories from

the water in the final output DCD file.

3.1.4 FlipDCD Tool

The binary format of the DCD trajectories produced by simulations de-

pends on the the machine operating system type (Unix, MS Windows,...etc)

which is running the simulation. The byte ordering or endianism is different

from one machine type to another. For example, Unix uses little endianism,

while Windows uses big endianism. To overcome the problem of a platform

mobility a conversion tool is needed to convert from little endianism to big

43

endianism and viceversa.

FlipDCD is a tool used for converting binary trajectory files between

little and big endian formats. The utility program FilpDCD is provided with

the NAMD Linux/Intel version to reformat the DCD files endianism[48]. It

reverses the endianism by memory mapping the DCD file and converting

the endianism in-place. This allows the use of a Windows PC to read DCD

trajectories generated on a Sun platform (Unix), and for a Sun platform to

read trajectory files produced on a PC cluster running Linux. Moreover,

FlipDCD can be used to report the endian status of DCD files without

regard for the origin of the DCD files[51].

3.1.5 MATLAB: High-Performance Computation Software

MATLAB is a high-performance language for technical computing used

for numerical computation and graphics. In other words, MATLAB is a

software designed for matrix computation, solving systems of linear equa-

tions, computing eigenvalues and eigenvectors and so forth[52]. It was in-

troduced in the late 1970s by Cleve Moler at the University of New Mexico

to provide students an easy access to matrix software developed by LIN-

PACK and EISPACK projects. MATLAB now is one of the products of The

MathWorks corporation used widely in many fields of research like natu-

ral sciences and engineering to perform the numerical analysis and image

44

processing.

In this work MATLAB is used as the main analysis tool. It is used to

read the binary DCD files (trajectory files). It is also used to compute the

covariance matrix by using the MATLAB’s function cov(X), where X is the

data matrix. The eigenvalues and eigenvectors are found for the covariance

matrix in MATLAB by using the the function eig(A) which returns eigen-

values of matrix A and function [V,E]=eig(A) which returns the matrix V

containing the eigenvectors of matrix A as columns, and diagonal matrix

E containing the eigenvalues of matrix A. Moreover, all the graphs in this

work were plotted using the MATLAB graphical capabilities.

3.2 Molecular Dynamics Simulation

To run a MD simulation of BPTI using NAMD package, four files are

needed[7]:

1. A BPTI file (6PTI) from the Protein Data Bank (PDB)[53], which

contains the initial atomic coordinates and velocities for protein.

2. A force field parameter file which contains all the needed informa-

tion about the bonded and non-bonded interactions between protein

molecule atoms. The force field has four types: CHARMM, X-PLOR,

AMBER and GROMACS. In this work the CHARMM force field type

45

was used.

3. Protein Structure File(PSF) of BPTI generated from the initial PDB

file and the parameter files using VMD software. This file contains

the structural information of the protein.

4. NAMD configuration file which contains all the simulation options

and commands needed to run the simulation.

Running the simulation for a molecular system follows these steps[10]:

1. Preparation of the protein molecule for simulation by generating the

needed PDB and PSF protein files.

2. Minimization which is important for the stability of the simulation.

3. System Heating to reach the desired temperature.

4. Equilibration the system to avoid any distortion in the results.

5. Running the simulation and getting the final data.

6. Analyzing the resultting MD simulation data.

3.2.1 Preparation of the BPTI Molecule

In this phase, all the files required to run the simulation using NAMD

package are generated. The PDB and PSF files of BPTI are generated from

46

6PTI (Initial BPTI file from data bank) by using psfgen within VMD. A

parameter file which contains the description of bond, angle, torsion energy

and non-bonded interactions, and a topology file which contains the types

of molecule atoms, are needed in the preparation of PDB and PSF files[7].

The PSF and PDB files of BPTI are built as follows:

1. The 6PTI.pdb original file is split into two segments, 6PTI−protein.pdb

and 6PTI−water.pdb. All non-protein atom records are removed us-

ing the grep command in VMD as follows[48]:

• grep -v ’ĤETATM’ 6PTI.pdb > output/6PTI protein.pdb

• grep ’HOH’ 6PTI.pdb > output/6PTI water.pdb

2. Run the psfgen package within VMD1.8.4 as follows[48]:

• psfgen

Run the psfgen commands within VMD shell script .

• topology toppar/top all22 prot.inp

Read the topology definitions for the residues from a folder called

toppar[48].

• segment BPTI pdb output/6PTI protein.pdb

Build protein segment of BPTI and adds the hydrogen atoms.

47

• patch DISU BPTI:5 BPTI:55

• patch DISU BPTI:14 BPTI:38

• patch DISU BPTI:30 BPTI:51

• pdbalias atom ILE CD1 CD

In the residue ILE, the atom CD is called CD1 in the pdb file.

The ”pdbalias atom” command is used here to define the correct

name.

• coordpdb output/6PTI protein.pdb BPTI

• guesscoord

This command guesses the missing coordinates locations of many

atoms, particularly hydrogens atoms[48].

• writepdb output/bpti.pdb

Writes the coordinates of all BPTI atoms (including hydrogen

atoms).

• writepsf output/bpti.psf

Writes the structure file of BPTI.

The PSF and PDB files of BPTI are ready to run the simulation in

vacuum. For solution we need to solvate and ionize the BPTI in a water

box[7].

48

3.2.2 Solvation and Neutralization of BPTI in Water

Most activities of proteins occur in solution environment. Thus to mimic

the real environment of BPTI, we need to solvate it in water. VMD was

used to build the PSF and PDB files of BPTI in a water box. This is done

as follows :

• package require solvate

Invoke the solvate package to use with VMD commands.

• solvate BPTI.psf BPTI.pdb -t 6 -o BPTI−water

This command allows the solvate package to place the BPTI files

(BPD and PSF) in a water box with enough size to avoid the interac-

tion between the protein and its image in the next cell of the Periodic

Boundary Conditions (PBC)[7]. The option -t define the dimensions

of the water box. The option -o exports the final BPTI files with the

water box.

• set everyone [atomselect 0 all]

Atomselect is the command to access information about the atoms in

a molecule. It takes the Id of the molecule (in our case 0) and number

of frames to select (all frames in our command).

49

• measure minmax $everyone

Returns the minimum and maximum coordinates (x,y,z) of the protein

atoms in the water.

• measure center $everyone

Return the center of the selected atoms (center of the water box).

The next step after creating the water box and putting the protein

molecule in it, is adding a number of ions to the solvent to make its charge

zero. The net charge of all atoms should be determined to now the number

of ions needed to neutralize the charge of the system. The autoionize pack-

age withen VMD calculate the net charge of the system and adds Na and

Cl ions to the solvent. Ion positions are random, but there are minimum

distances between ions and molecule as well as between any two ions. If an

ion concentration is specified, autoionize will also attempt to neutralize the

total charge of the system. This package is used to ionize the BPTI files as

shown in the following commands:

• package required autoionize

Run the autoionize package within VMD.

• autoionize -psf BPTI−water.psf -pdb BPTI−water.pdb -is 0.05

50

This command tells the autoionize package to compute the net charge

of the solvent, and to add the appropriate number of ions (Na) and

(Cl) to the solvent to make its charge zero. The option -is defines the

desired concentration (mol/l).

The resulting file after the ionization is ready to start the simulation in

solution (Fig.3.1).

3.2.3 Minimization Phase

Energy minimization of the protein structure should be done before

starting a molecular dynamics simulation in order to remove any strong

Van Der Waals interactions, which might cause local structural distortion

and lead to an unstable simulation[10]. Energy minimization of solvated

BPTI is done with the protein fixed in its energy minimized positions for 5

ps using NAMD.

3.2.4 Heating Phase

This phase of the MD simulation aims to raise the temperature of the

system (protein and water) to the desired one. The initial velocities of the

BPTI at low temperature (0 K) are assigned to each atom, in the system.

To raise the temperature of BPTI from zero to 300 K, new velocities are

assigned at a slightly higher temperature while the simulation is running,

51

Figure 3.1 BPTI Molecule after ionization in a water box (solution).

52

and the simulation is allowed to continue until the desired temperature (300

K) is reached[10].

3.2.5 Equilibration Phase

This phase aims to make sure that the simulation is stable. This means

that the properties of the simulated system like the pressure, the energy

and temperature, are stable with respect to time. In this work, the BPTI

was equilibrated to 40 ps using the temperature reassignment method[7]. If

the temperature of the BPTI solvation increases or decreases, the velocities

can be scaled such that the temperature returns to its desired value[10].

3.2.6 Production Phase

This phase is the final step in which the simulation of BPTI in solution

runs for 30 ns at 300 K. To run the simulation, a parameter file is needed

(Appendix B). It specifies the time step, electrostatic, constrains, fixed

atoms, periodic boundary conditions, input files, calculated thermodynam-

ics parameters and output files.

The resulting file is the DCD file which store the coordinates (x,y,z)

of each atom in the system every 50 fs. This file is the trajectory of the

solvated protein motion along the simulation time (30 ns). It has 600000

conformations (frames), and a total size of 57 GB (Giga Byte).

53

3.2.7 Analysis of MD Simulation Trajectories

The resulting DCD trajectory file contains all the information about

protein motion and its water environment. To analyze this trajectory we

first need to separate the Cα atoms coordinates from the water in the DCD

trajectory. The Cα atoms in BPTI contain the interesting information about

the motion of the protein molecule in solvent[36, 47]. The catdcd tool is

used to separate these Cα atoms coordinates from the DCD trajectory file.

Using catdcd to do the separation needs an index file for Cα atoms. This

file is prepared by writing the following VMD commands :

• set ca [atomselect 0 ”name CA”]

• $ca get index

• $ca writepdb ca.pdb

The index of Cα resulting from VMD is saved in a file named index.txt

using the unix command cat: cat> index.txt. The catdcd tool can used to

separate Cα form the total trajectory by writing the following line in the

unix prompt directory where the catdcd is installed:

• ./catdcd -i index.txt -o calpha.dcd/D/dcdresults/traj.dcd

Catdcd produce a new DCD file called calpha.dcd that contains only

the Cα atom coordinates. This new DCD file can be opened by VMD with

54

the ca.pdb file. The motion of BPTI as seen on VMD has a rotational and

translational part. The only motion of interest is the internal motion. So,

there is a need to fit and align the protein frames of motion to a reference

frame.

To do the fitting and alignment, we choose a reference frame after the

simulation becomes stable and reaches the desired temperature (300 K). In

this work the reference frame chosen was at 1ns from the simulation time.

Fitting and alignment to the chosen reference frame is done by running the

following script[36] in VMD:

• proc fit-align {{mol top}} {

• # use frame 20000 for the reference

• set reference [atomselect $mol all frame 20000]

• # the frame being compared

• set compare [atomselect $mol all]

• # $mol is the molecule ID on VMD

• set num steps [molinfo $mol get numframes]

• for {set frame 20000} {$frame < $num steps} {incr frame}

{

55

• # get the correct frame

• $compare frame $frame

• # compute the transformation

• set trans mat [measure fit $compare $reference]

• # do the alignment

• $compare move $trans mat

• }

• }

After running the fitting and aligning script, the protein is checked on

the VMD display window, to make sure that it is fitted and aligned The

fitted coordinates are saved in a new DCD file. The new fitted DCD file is

little endian. To analyze this file under Windows platforms (big endian)we

need to change the endianism of the file. The flipdcd tool which distributed

with NAMD package is used to convert the endianism of the DCD trajectory

as explained in section 3.1.4. The command is:

• ./flipdcd DCDfile-name.dcd

56

The first analysis technique of the fitted trajectory of BPTI can applied

by calculating the RMSD values of all simulated protein frames or struc-

tures. This is done by running the following script[36] on the fitted DCD

file opened by VMD:

• # Prints the RMSD of the protein atoms between each

timestep

• proc print rmsd {{mol top}} {

• # use frame 20000 for the reference

• set reference [atomselect $mol all frame 20000]

• # the frame being compared

• set compare [atomselect $mol all]

• set f [open rms1.txt a]

• # $mol is the molecule ID on VMD

• set num steps [molinfo $mol get numframes]

• for {set frame 20000} {$frame < $num steps} {incr frame}

{

• # get the correct frame

57

• $compare frame $frame

• # compute the transformation

• set trans mat [measure fit $compare $reference]

• # do the alignment

• $compare move $trans mat

• # compute the RMSD

• set rmsd [measure rmsd $compare $reference]

• # print the RMSD

• puts $f ”$rmsd”

• }

• close $f

• }

After running the print rmsd script the RMSD values are stored in the text

file rms1.txt, then plotted using MATLAB (Fig.4.2).

The next step is to find the covariance matrix of the data matrix (co-

ordinates matrix). MATLAB’s function COV(X) is used to calculate the

58

covariance matrix, where X is the DCD file trajectory which is read in MAT-

LAB by using the M-file named readdcd. The B-factor is calculated from

the diagonal element of the MD simulation covariance matrix (Appendix

C.4) as in the equation(3.1):

Bi =
8

3
Π2(cii) (3.1)

where cii is the covariance matrix diagonal element and Bi is the B-factor

for atom i.

The eigenvectors and eigenvalues of the covariance matrix are calculated

by using the MATLAB function [V,E]=eig(A), where A is the covariance

matrix and V is the resulting eigenvectors matrix (columns of the matrix

are the eigenvectors) and E is the eigenvalues diagonal matrix. The overlap

of protein fluctuations now can be calculated by two methods: the first

is the total overlap between covariance matrices (equation 2.64)of simu-

lation subintervals time by using MATLAB (Appendix C.2). The other

method is calculating the overlap between the eigenvectors for approxi-

mately 86% of fluctuations by the squared inner product of eigenvectors

subspaces(equation (2.59)) along the simulation time using MATLAB (Ap-

pendix C.3).

Chapter 4

Results and Analysis

4.1 B-Factor

The atomic B-factor is one of the few measurements for protein flexibility

that can be obtained from experimental data (X-ray diffraction data) [3]. To

validate simulation results the B-factor is calculated from the data resulting

from the simulation using equation (3.1), and compared to the B-factor from

the experimental data for BPTI protein which is available from the Protein

Data Bank[53].

The calculated B-factor values from the simulation compared with the

experimental crystallographic B-factors are shown in Fig.4.1. The simula-

tion B-factor values agree with the experimental crystallographical values

except two regions. The first is between residues 10 and 20, and the sec-

ond region is between residues 34 and 42. Its also clear from the figure

(Fig.4.1) that the simulated B-factor value increases with time especially in

the disagreement region between simulation and experiment.

60

Figure 4.1 Simulated B-factor for the Cα atoms of BPTI compared with
the B-factor obtained from crystallographic structure refinement based on X-ray
data.

61

4.2 Root Mean Square Deviation (RMSD)

The changes in the conformations of the BPTI along the simulation

time are analyzed by calculating the root mean square deviation (RMSD)

of molecular dynamics structures with respect to the initial structure (the

initial structure is chosen after 1ns of the simulation). As shown in Fig.4.2

the stability of the molecular dynamics simulation of BPTI along 30ns is

achieved after 10ns. Beyond this point the RMSD value for BPTI in water

simulation remains roughly arround 2.25 Å.

62

Figure 4.2 Root mean square deviation (RMSD) of the BPTI configurations
with respect to the initial configuration, as a function of simulation time.

63

4.3 Convergence of Conformational Sampling

To study the convergence of conformational sampling for BPTI along

30ns MD simulation, the overlap between different fragments of the simula-

tion trajectory are calculated. The trajectory of BPTI is divided into equal

length fragments. The covariance matrix is calculated for each fragment.

The similarity between these covariance matrices is calculated using the

total overlap between protein fluctuations (equation (2.64)).

If the covariance overlap between different time windows of the simula-

tion is close to 1 this will be a good indicator to predict the time depen-

dence of the conformational sampling for BPTI[3]. If not, the total overlap

is highly less than 1 (lack of convergence) and the conformational space is

steadily throughout the simulation, this means the chosen time windows

length is still smaller than time needed to obtain the convergence of the

protein sampling.

The covariance overlap as shown in Fig.4.3-a is calculated between the

first 100ps (reference fragment), and all other 100ps fragments along the

30ns simulation (300 fragments each one length is 100ps). The average

value of the overlap between these fragments and the first one is about

50%. The average overlap for 500ps fragments (Fig.4.3-b) is approximately

50%. The overlap for a larger time fragments (1ns, 4ns and 10 ns) gives

64

a value similar to the 100ps time fragments overlap. For 1ns fragments

(Fig.4.4-a) and 4ns fragments (Fig.4.4-b) the overlap is a little over 50%.

The 10ns fragments show a similar behavior(Fig.4.5).

The overlap for different time windows (different trajectory fragments)

using the covariance overlap method (total overlap) is about 50% through-

out the simulation regardless of the time size of the fragments used to

calculate the overlap. This means either the simulation time is much less

than the time needed for convergence sampling for BPTI, or the method

used to calculate the overlap between protein trajectory fragments is not

suitable for measuring conformational sampling.

The covariance matrix of the trajectory coordinates contains the total

information about the dynamics of the BPTI backbone atoms (Cα) along

the simulation time. A large part of this information is about random mo-

tion (local fluctuations). This is not what we look for when trying to get

a clear idea about convergence sampling for BPTI. The essential subspace,

dealing with correlated motions, explaining the atomic motion (atomic fluc-

tuations) is the interesting part. For this reason we need another method to

calculate the overlap between different time windows of the simulation with-

out considering this large amount of random motion in protein molecule.

The PCA technique is used to get the essential subspace which is respon-

65

sible for the majority of the atomic fluctuations. The eigenvectors with the

large eigenvalues represent most of the atomic fluctuations. That means,

the overlap between different time windows can be analyzed using subspace

overlap method (equation 2.59) which is the inner square product between

subspace eigenvectors. Only eigenvectors with the largest eigenvalues are

included.

The overlap is calculated between the eigenvectors subspace of protein

fragments, where each subspace contains 30 eigenvectors of high eigenvalues

representing 86% of the protein fluctuations. The subspace overlap between

protein fragments where each fragment length is 100ps is about 57% as

shown in Fig.4.6-a. The subspace overlap increases with the length of the

protein fragments as shown in Fig.4.6-b where each fragment is 500ps and

the overlap is varies between 80% and 70%. The overlap varies between 85%

and 70% for protein fragments of 1ns (Fig.4.7-a). The average subspace

overlap is about 82% between protein fragments in which each fragment

length is 4ns (Fig.4.7-b).

The overlap between protein fragments longer is more than 4ns decreases

to vary between 80% and 60%. The overlap between 7ns long fragments is

about 70% (Fig.4.8-a). This value drops to about 60% between 10ns long

fragments. (Fig.4.8-b).

66

Figure 4.3 Calculated covariance overlap using equation2.64. (a) The overlap
between different simulation fragments with 100ps length for each time fragment
along the 30ns simulation. (b) Covariance overlap between 500ps time fragments.

67

Figure 4.4 Calculated covariance overlap using equation2.64. (a) The overlap
between different simulation fragments with 1ns length for each time fragment
along the 30ns simulation. (b) Covariance overlap between 4ns time fragments.

68

Figure 4.5 Calculated covariance overlap using equation2.64 between 10ns
time windows along the 30ns simulation.

69

Figure 4.6 Calculated subspace overlap using equation2.59. (a) The over-
lap between 30 eigenvectors 100ps long fragments along the 30ns simulation.
(b)Overlap between 30 eigenvectors from 500ps long fragments along the simu-
lation time.

70

Figure 4.7 Calculated overlap using equation2.59. (a) The overlap between
30 eigenvectors from 1ns long fragments. (b) Overlap between 30 eigenvectors of
4ns long fragments.

71

Figure 4.8 Calculated overlap using equation2.59. (a) The overlap between
30 eigenvectors of 7ns long fragments. (b) Overlap between 30 eigenvectors of
each 10ns time fragments along the simulation.

Chapter 5

Discussion of Results and Conclusion

In this work, a 30ns long simulation for the BPTI protein was performed

under the Linux environment using NAMD and VMD softwares. This is the

longest simulation for this protein so far. The analysis for data trajectories

were done using MATLAB program.

The first analysis on the data was calculating the B-factor and com-

pared it values with the experimental crystallographical B-factor values

which shows a qualitative agreement between them. This agreement val-

idate our simulation results with respect to experimental results. Many

other simulations made on BPTI shows similar results for B-factor[7, 54].

They obtained that B-factors calculated from the simulation (for BPTI and

other proteins) are considerably larger than the experimental values (show

Hunenberger[54] and AL-’Ajarmeh[7]). Further more, Molecular dynamics

on protein simulations show only qualitative agreement for B-factor with

experiment but not quantitatively[55].

The second analysis was calculating the RMSD values for atomic posi-

tions of Cα atoms. These converged to 2.25Å for BPTI in water.

Principal component analysis (PCA) of the Cα trajectories was used.

73

The overlap between different time windows of the simulation was cal-

culated to study the convergence of conformational space for BPTI. Two

methods were used to find the overlap. The first one finds the total overlap

between covariance matrices for different fragments of the same time dura-

tions (100ps, 500ps, 1ns, 4ns and 10ns). This method was used by Hess[2]

to measure the convergence of the protein (HPr and Ioyszyme) sampled

space. He found that covariances have not converged after 14ns. The sec-

ond method calculates the overlap between eigenvectors of high motion

fluctuations (high eigenvalues percentage). Using this method to find the

convergence of conformational sampling for membrane proteins along 10ns

simulation also were not converged (overlap was about 55%.)[3].

In this work Eigenvector subspaces of different time length (100ps, 500ps,

1ns, 4ns, 7ns and 10ns) were analyzed. The results of calculating overlap

using the two methods mention before are:

1. The total overlap between covariance matrices of different time win-

dows of BPTI simulation gave a steady overlap value throughout the

simulation. This is due to the inclusion of all motion,including the

random motion.

2. The atomic fluctuations of Cα atoms only interested in studying con-

vergence of conformational sampling (local fluctuations or random

74

motion are not interested). The PCA technique is used to get only

the interested motion by calculating the eigenvectors of the data co-

variance matrix.

3. The overlap between eigenvectors with high eigenvalues which repre-

sent a high percentage of correlated atomic fluctuations was calculated

for different time windows to see the convergence time BPTI along

30ns. The number of chosen eigenvectors is 30 that represent 86% to

90% of atomic fluctuations.

4. The value of overlap calculated using the second method shows an

increases in overlap with the size of the time windows from 100ps to

4ns. Then the value of overlap decreases for time windows larger than

4ns.

5. The higher value of subspace overlap occurres when the length of time

windows is 4ns. This means that similar atomic fluctuations for BPTI

occurs along the simulation over the period of 4ns time.

6. The MD simulations made for BPTI with different time scales from

hundreds of picoseconds[54] to 20ns[7] in addition to this work in

which the simulation long is 30ns, shows that the positional fluctua-

tions for BPTI are not yet completly converged.

75

7. According to the table 1.1 there are many molecular events that need

a times up to seconds. Thus a longer simulation is needed to see the

other types of motion.

Future work on studying protein dynamics should concern on long time

simulations to get more insights about protein intramolecular motion. De-

velopment in computer hardware and software in the future as expected

will offer an opportunity to do more long time simulations on protein.

Appendix A

Files Formats

A.1 The PDB file format

The Protein Data Bank (PDB) file format was created in the 1970′s as

a standard representation for macromolecular structure data derived from

X-ray diffraction and NMR studies. The data contained in the PDB file

include atomic coordinates, bibliographic citations, primary and secondary

structure, information, and crystallographic structure factors and NMR ex-

perimental data. All details about this file format are available in the

Protein Data Bank Contents Guide: Atomic Coordinate Entry

Format Description Version 2.3, July 9, 1998 .

(URL: http://www.wwpdb.org/documentation/format2.3-0108-a4.pdf)

The table below shows the PDB file format for the coordinate records

(ATOM and HETATM):

An example of sample records for a PDB file format shown in fig.A.1.

77

Figure A.1 The PDB file format example

A.2 The PSF file format

The Protein Structure File (PSF) is generated by using CHARMM force

field (topology file). The PSF file contains bonds, angle, dihedral, improper

forces between atoms. The fig.A.2 show an example of a PSF file example

for BPTI.

78

A.3 The DCD file format

The coordinate trajectories produced by NAMD are in binary format.

Fortran data type of the trajectory DCD file is structured as in fig.A.3.

Where HDR = ’CORD’ or ’VELD’ for coordinates and velocities, re-

spectively:

ICNTRL(1)=NFILE ! number of frames in trajectory.

fileICNTRL(2)=NPRIV ! number of steps in previous run.

ICNTRL(3)=NSAVC ! frequency of saving.

ICNTRL(4)=NSTEP ! total number of steps. NFILE=NSTEP/NSAVC.

ICNTRL(8)=NDEGF ! number of degrees of freedom.

ICNTRL(9)=NATOM-NFREAT ! number of fixed atoms.

ICNTRL(10)=DELTA4 ! coded time step.

ICNTRL(11)=stoi(XTLTYP,ALPHABET) ! coded crystallographic ! group

(or zero).

ICNTRL(20)=VERNUM ! version number.

79

Field NO. Column range FORTRAN format Description

1 1 - 6 A6 Record ID (eg. ATOM, HETATM)

2 7 - 11 I5 Atom serial number

- 12 - 12 1X Blank

3 13 - 16 A4 Atom name (eg ” CA ” , ” ND1”)

4 17 - 17 A1 Alternative location code (if any)

5 18 - 20 A3 3-Letter amino acid code for residue

- 21 - 21 1X Blank

6 22 - 22 A1 Chain identifier code

7 23 - 26 I4 Residue sequence number

8 27 - 27 A1 Insertion code (if any)

- 28 - 30 3X Blank

9 31 - 38 F8.3 Atom’s x-coordinate

10 39 - 46 F8.3 Atom’s y-coordinate

11 47 - 54 F8.3 Atom’s z-coordinate

12 55 - 60 F6.2 Occupancy value for atom

13 61 - 66 F6.2 B-value (thermal factor)

- 67 - 67 1X Blank

14 68 - 70 I3 Footnote number

Table A.1 The PDB format for coordinate records

80

Figure A.2 The PSF file format example for BPTI

81

Figure A.3 The DCD file format example

Appendix B

Configuration File

#namd configuration file for Running the simulation of PBTI in water.

molecular system.

Structure /root/namd/NAMD 2.5 Linux-i686/water/ionized.psf

coordinates /root/namd/NAMD 2.5 Linux-i686/water/ionized.pdb

temperature 0

#force field

paraTypeCharmm on

parameters toppar/par all22 prot.inp

parameters toppar/par all27 prot lipid.inp

restartname water bpti.pdb

restartfreq 50

binaryrestart no

#output

outputenergies 50

outputtiming 50

outputMomenta 50

outputPressure 50

83

xstFreq 50

dcdFreq 50

wrapAll on

wrapNearest on

timestep 1

nonbondedFreq 2

stepspercycle 20

fullElectFrequency 2

#Approximations

switching on

switchdist 8.5

cutoff 10

pairlistdist 11.5

cellBasisVector1 50.336 0 0

cellBasisVector2 0 43.5166 0

cellBasisVector3 0 0 43.662

cellOrigin 9.546 4.504 4.056

margin 5

pme on

pmeGridsizeX 32

84

pmeGridsizeY 32

pmeGridsizeZ 64

#basic simulation

exclude scaled1-4

1-4scaling 0.4

#fix bpti atoms

fixedatoms on

fixedAtomsForces on

#bpti file fixed add water

fixedatomsfile /root/namd/NAMD 2.5 Linux-i686/water/fix.pdb

fixedAtomsCol B

langevinDamping 10

langevinTemp 300

langevinHydrogen no

langevinPiston on

langevinPistonTarget 1.01325

langevinPistonPeriod 200

langevinPistonDecay 100

langevinPistonTemp 300

useGroupPressure yes

85

useFlexibleCell yes

useConstantRatio yes

#output

binaryoutput no

outputname equil out wat fix

#run one step to get into scripting mode

minimize 0

#langevinPiston turn off until later

langevinPiston off

#minimization

minimize 5000

output min wat fix

#heating

run 5000

output heat fix

#equilibration 10ps

langevinPiston on

run 10000

output equil fix

min all atoms

86

langevinPiston off

fixedAtoms off

minimize 10000

output min all wat

#heat all

run 10000

output heat all wat

#equilibration 40ps

langevinPiston on

run 40000

output equil all wat

langevinPiston off

langevin off

run 30000000

output endsim

Appendix C

M-Files Used to Analysis Data trajectory

C.1 Calculation of the Covariance Matrix

%This M-file used to calculate the covariance matrix co of the

%data matrix A (trajectory) which its size is r*c.

function co =covariance(A,r,c)

co =zeros(c,c);

%%%%%%%%%%%%%%%%% Columns Averages %%%%%%%%%%%%%%%

avg= zeros(1,c);

for i = 1:c

for j = 1:r

avg (1,i)= avg(1,i)+A(j,i);

end

avg(1,i)=avg(1,i)/r;

end

%%%%%%%%%%%%%%%%% Variance Calculations %%%%%%%%%%%%%%%

for i =1:c

for j = 1:r

A(j,i)=A(j,i)-avg(1,i);

end

88

end

%%%%%%%%%%%%%%%%% Dot Products %%%%%%%%%%%%%%%

for i=1:c

for k=1:c

for j = 1:r

co(i,k)=co(i,k)+(A(j,i)*A(j,k));

end

end

end

C.2 The First Method to Calculate the Overlap

%This M-file calculate the total overlap S between two covariance

% matrices produced from the MD trajectory for BPTI.

function meth1=overlap(xyz1,xyz2)

% xyz1 is the data matrix (trajectory) for first interval of

%simulation time.

% xyz2 is the other data matrix for another interval of

%simulation time.

A=cov(xyz1);

B=cov(xyz2);

[Ra,Ea] = eig(A);

89

[Rb,Eb]= eig(B);

c = Ra ∗ ((Ea).0.5) ∗Ra′;

d = Rb ∗ ((Eb).0.5) ∗Rb′;

s = 1− (sqrt(trace((c− d)2))/sqrt(trace(A) + trace(B)));

C.3 The Second Method to Calculate the Overlap

% This M-file calculate The overlap between two sets of n

%orthonormal vectors (eigenvectors).

function meth2=overlap(A,B,n)

% A is the first eigenvectors subset (v 1,....,v n).

% B is the second eigenvectors subset (w 2,....,w n).

% n is the number of eigenvectors.

meth2=zeros(n,n);

for i =1:n;

for r = 1:n;

for j = 1:n;

test(i,r) = test(i, r) + A(j, i) ∗B(j, r);

end

test(i,r)=(test(i, r))2;

end

end

90

ovlp =sum(sum(meth2))/n

C.4 M-file Used to Calculate the B-factor

% This M-file Using to calculate the B-factor from covariance matrix.

function B=factor(co);

% co is the covariance matrix.

% B is a produced array contains the b-factor value for each atom.

A=diag(co);

B= zeros(57,1);

for i= 1:3:169;

B(i) = sum(A(i) + A(i + 1) + A(i + 2)) ∗ 8 ∗ pi2/3;

end

91

References

1. CHARMM Principles. Accelrys, Inc. September 18, 1998.
(URL:
http://www-bio.unizh.ch/docu/acc docs/doc/charmm principles/

Ch04 mol dyn.FM5.html#679031

2. Berk Hess. Convergence of Sampling in Protein Simulation. Physical
Review E, Volume 65, 031910. 2002.

3. José D. Faraldo-Gómez, Lucy R. Forrest, Marc Baaden, Peter J. Bond,
Carmen Domene, George Patargias, Jonathan Cuthbertson and Mark
S.P. Sansom. Conformational Sampling and Dynamics of Membrane
Proteins From 10-Nanosecond Computer Simulations. PROTEINS:
Structure, Function, and Bioinformatics (2004) 57: pp. 783791.

4. Helmut Grubmüller. Proteins as Molecular Machines: Force
Probe Simulations. John von Neumann Institute for Comput-
ing, Jülich, NIC Series, Vol. 23, pp. 401-422, 2004. (URL:
http://www.fz-juelich.de/nic-series/volume23).

5. Sugato Basu. Data Structures for a Mini-Threding Algorithm for Pro-
tein Structure Predction. Master Thesis, Unvrsity of California (Santa
Cruz), 2000.

6. B.L. de Groot. Native state protein dynamics : a theoretical approach,
Doctoral Thesis, Groningen University, (1999).

7. Basem AL-’Ajarmeh. Comparison of Residue Motion Correlation in
BPTI Using Vacum and Solvent Molecular Dynamics Simulations.
Master thesis, Birzeit University, Palestine, 2005.

8. Markus Dittrich, Chalermpol Kanchanawarin. Case Study: BPTI.
(URL:http://www.ks.uiuc.edu/Training/CaseStudies/pdfs/
bpti.pdf).

9. Ascenzi P. Bocedi A. Bolognesi M. Spallarossa A. Coletta M. De Cristo-
faro R. Menegatti E. The bovine basic pancreatic trypsin inhibitor (Ku-
nitz inhibitor): a milestone protein. Curr. Protein Peptide Sci. 4,
231-251. (2003).

92

10. Roland Stote, Annick Dejaegere, Dmitry Kuznetsov, Laurent Falquet.
Molecualr Dynamics Simulation Tutorial. October 26, 1999, version
1.0. (URL:http://www.ch.embnet.org/MD tutorial).

11. D. C. Rapaport. The art of molecular dynamics simulation .Cambridge,
U.K.: Cambridge University Press, 2004. p3-4.

12. Michael P. Allen. Introduction to Molecular Dynamics Simulation.
John von Neumann Institute for Computing, Jülich, NIC Series, Vol.
23, pp. 1-28, 2004.

13. Volker Eyrich , Tatyana Polenova, and Angelo Rossi. Conformational
Search: M.D. M.C. and S.D. Columbia University - Spring 2002
(URL:http://mcdermott.chem.columbia.edu/biophys 2002/search

/backgroundII.html).

14. J. Woller. The Basics of Monte Carlo Simulations. (1996).
(URL:http://www.chem.unl.edu/zeng/joy/mclab/mcintro.html).

15. Peter J. Steinbach. Introduction to Macromolecular Simulation. Bio-
physics Textbook Online (BTOL), (2003).
(URL:http://www.biophysics.org/education/steinbach.pdf)

16. L. Ellis, K. Chow. Protein Structure Prediction From Pri-
mary Sequence. Biophysics Textbook Online (BTOL), (1998).
(URL:http://www.biophysics.org/education/ellis.pdf)

17. F. Suits, M. C. Pitman, J. W. Pitera, W. C. Swope, R. S. Germain.
Overview of molecular dynamics techniques and early scientific results
from the Blue Gene project.IBM Journal of Research and De-
vlopment, Blue Gene, Volume 49, Number 2/3, (2005).

18. Doucet, Jean-Pierre and Jacques, Webber. Computer-Aided Molecular
Design. Academic press inc, U.S.San Diego, CA 92101, p127.

19. Slobodan Danko Bosanac. Dynamics of Particles and the Electromga-
netic Field. World Scientific Series in Contemporary Chemical Physics
- Vol. 24. Sept 2005.

20. Daniel A. Beard. A Molecular Modelers Guide to Statisti-
cal Mechanics. Biophysics Textbook Online (BTOL), (2001).
(URL:http://www.biophysics.org/education/beard.pdf)

93

21. J. M. Haile. Molecular dynamics simulation : elementary methods.
New York: Wiley,1997.

22. Boris Veytsman and Michael Kotelyanskii. Molecular Dynamics I: Nu-
merical Integration. Finite Difference methods. November 17, 1997.
(http://www.plmsc.psu.edu/ www/matsc597c-1997/simulations/

Lecture5/)

23. Alex S. Ct, Bill Smith and Philip J. D. Lindan, A Molecular Dynamics
tutorial: Integration algorithms.Daresbury Laboratory 2001.
(http://www.compsoc.man.ac.uk/ lucky/Democritus/Theory/

verlet.html)

24. Igor P. Omelyan, Numerical integration of the equations of motion for
rigid polyatomics: The matrix method. Institute for Condensed Matter
Physics, National Ukrainian Academy of Sciences, 1 Svientsitsky St.,
UA-290011 Lviv, Ukraine. 17 Jan 1999.
(URL: arxiv.org/pdf/physics/9901026)

25. Bryan Van Der Ende. Molecular Dynamics Simulations of Wild-Type
and Mutant Neu Transmembrane Domains. Master Thesis, University
of Guelph. December, 1999.

26. Francis W. Sears and Gerahard L. Salinger. Thermodynamics, Ki-
netic Theory, and statistical Thermodynamics, Third edition. Addison-
Wesley Publishing Company.p302 and p307.

27. William Graham. Computational statistical mechanics. Amsterdam:
Elsevier, 1991. p1-3.

28. Daniel P. Stevens, Eric Renner and Roberto Gomperts. Nanotechnol-
ogy Research: Enabling Technologies for Innovative New Materials.
Principal Scientist, SGI; Milan Mehta, Intel. May 2005.
(URL:http://www.jrti.com/pdf/adv matsci.pdf)

29. National Institutes of Health (NIH), Center for Molecular Model-
ing(CMM). Molecular Mechanics.
(URL: http://cmm.cit.nih.gov/modeling/guide documents/

molecular mechanics document.html)

30. Kim Baldridge, Kim’s Research Group. Molecular Mechanics. San
Diego Supercomputer Center.
(URL: http://www.sdsc.edu/ kimb/eff.html)

94

31. David Curcó , Francisco Rodriguez-Ropero and Carlos Alemán. Force-
field parametrization of retroinverso modified residues: Development
of torsional and electrostatic parameters. Journal of Computer-
Aided Molecular Design (2006) 20: pp. 1325.

32. Thomas W. Shattuck, Colby College Molecular Mechanics Tutorial.
MOE Version, December 2004.
(URL: http://www.colby.edu/chemistry/CompChem/MMtutor.pdf

)

33. David A.C. Beck and Valerie Daggett, Methods for molecular dynam-
ics simulations of protein folding/unfolding in solution. ELSEVER,
Methods (2004) 34: pp. 112120.

34. Lindsay I Smith. A tutorial on Principal Components Analysis. Febru-
ary 26, 2002.
(URL:
http://csnet.otago.ac.nz/cosc453/student tutorials/principal

components.pdf)

35. Janne T.A. Saarela , Kari Tuppurainen, Mikael Peräkylä, Harri Santa,
Reino Laatikainen. Correlative motions and memory effects in molec-
ular dynamics simulations of molecules: principal components and
rescaled range analysis suggest that the motions of native BPTI are
more correlated than those of its mutants. Biophysical Chemistry
(2002) 95: pp. 4957.

36. Theoretical and Computational Biophysics Group, University of Illi-
nois and Beckman Institute. VMD User’s Guide, Version 1.8.5 August
21, 2006.
(URL:http://www.ks.uiuc.edu/Research/vmd/)

37. Zhiyong Zhang, Yongjin Zhu, Yunyu Shi, Molecular dynamics simula-
tions of urea and thermal-induced denaturation of S-peptide analogue.
Biophysical Chemistry (2001) 89: pp. 145-162.

38. Jonathon Shlens, A Tutorial on Principal Component Analysis. De-
cember 10, 2005; Version 2.
(URL:http://www.cs.cmu.edu/ elaw/papers/pca.pdf)

39. Paual R. Harasti, Roland List, Principal Component Analysis of
Doppler Radar Data. Part I: Geometric Connections between Eigen-

95

vectors and the Core Region of Atmospheric Vortices. Journal of
atmospheric sciences (2005) 26: pp. 4027-4042.

40. Lee-Ing Tong, Chung-HoWang and Hung-Cheng Chen. Optimization
of multiple responses using principal component analysis and technique
for order preference by similarity to ideal solution. Int J Adv Manuf
Technol (2005) 27: pp. 407414.

41. Caterina Arcangeli, Anna Rita Bizzarri, Salvatore Cannistraro. Con-
certed motions in copper plastocyanin and azurin: an essential dynam-
ics study. Biophysical Chemistry (2001) 90: pp. 45-56.

42. G. Vriend, R.W.W Hooft and D. van Aalten. ESSENTIAL DYNAM-
ICS ANALYSIS (ESSDYN).
(URL:http://www.csb.yale.edu/userguides/graphics/whatif/
html/chap75.html)

43. Torsten Becker, Jennifer A. Hayward, John L. Finney, Roy M. Daniel,
and Jeremy C. Smith. Neutron Frequency Windows and the Pro-
tein Dynamical Transition. Biophysical Journal (2004) 87: pp.
14361444.

44. Johannes Schmidt-Ehrenberg, Daniel Baum and Hans-Christian Hege.
Visualizing Dynamic Molecular Conformations. IEEE Visualization
2002 Oct. 27 - Nov. 1, 2002, Boston, MA, USA.

45. Wolfgang Kabsch. A solution for the best rotation to relate two sets of
vectors. Acta Crystallographica A,(1976) 32: pp. 922923.

46. David Parker. A Survey of Classification Methods for Protein Domain
Motions and Flexibility. Biochemistry 218 Final Project, Department
of Mechanical Engineering Stanford University, Stanford Ca. March
10, 2003. p7.

47. Caterina Arcangeli, Anna Rita Bizzarri, Salvatore Cannistraro. Molec-
ular dynamics simulation and essential dynamics study of mutated
plastocyanin: structural, dynamical and functional effects of a disul-
fide bridge insertion at the protein surface. Biophysical Chemistry
(2001) 92: pp. 183-199.

48. M. Bhandarkar, R. Brunner, C. Chipot, A. Dalke, S. Dixit, P. Grayson,
J. Gullingsrud, A. Gursoy, D. Hardy, J. Henin, W. Humphrey, D. Hur-
witz, N. Krawetz, S. Kumar, M. Nelson, J. Ph. NAMD Users Guide.
Version 2.6, August 30, 2006.

96

49. James Phillips, Gengbin Zheng, Laxmikant Kalé. NAMD: Biomolecu-
lar Simulation on Thousands of Processors.
(URL:
http://www.psc.edu/training/scaling/James Phillips namd v1.pdf)

50. Theoretical and Computational Biophysics Group, University of Illi-
nois at Urban-Champagin. CatDCD - Concatenate DCD files. 20 Mar
2006.
(URL: http://www.ks.uiuc.edu/Development/MDTools/catdcd/)

51. Jim Phillips. FlipDCD - DCD file endianism converter. 20 Mar 2006.
(URL: http://www.ks.uiuc.edu/Development/MDTools/flipdcd/)

52. Mark S. Gockenbach. A Practical Introduction to Matlab (Updated for
Matlab 5). Sep 8, 1999.
(URL: http://www.math.mtu.edu/ msgocken/intro/intro.html)

53. H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H.
Weissig, I.N. Shindyalov, P.E. Bourne: The Protein Data Bank. Nu-
cleic Acids Research, 28 pp. 235-242 (2000).
(URL: http://www.pdb.org/.)

54. P.H. Hünenberger, A.E.Mark and W.F van Gunsteren. Fluctuation and
Cross-correlation Analysis of Protein Motions Observed in Nanosecond
Molecular Dynamics simulations. J.Mol.Biol. (1995)252, pp. 492-503.

55. Kil Ho Eom. The Mechanical Modeling of Proteins. PhD Thesis, The
University of Texas at Austin. 2005.

